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A B S T R A C T

We study an intense-short pulse propagation in a saturable cubic–quintic nonlinear media in
the presence of nonlinear dispersion within the framework of an extended variational approach.
We derive an effective equation for the pulse width and demonstrate how the saturation due
to nonlinearity is achieved in presence of nonlinear dispersion. We find that the nonlinear
dispersion can change the pulse width and induce motion in the system. The direction of
induced motion depends on the sign of nonlinear dispersion. The pulse is energetically stable
at an equilibrium width. A disturbance can, however, induce oscillation in pulse width, the
frequency of which is always smaller due to nonlinear dispersion. We check dynamical stability
by a direct numerical simulation.

1. Introduction

Studies on the propagation of optical pulse in nonlinear media have been receiving great of attention in the context of solitary-
ave-based communication, especially, in femtosecond domain and, consequently, in ultrafast optics (pulse compression) and
ll-optical switching for last few decades. While propagating several nonlinear phenomena including filamentation, harmonic
eneration, third-order dispersion, self-steepening and self-frequency shift are associated with the pulse. The observations of such
onlinear phenomena depend crucially on the properties of the medium and the pulse [1–4].

An intense short pulse induces higher-order nonlinearities (HON) in an optical medium. Effects of such pulse are described by
arious forms of generalized nonlinear Schrödinger equation(GNLSE). The GNLSE is a version of the NLS equation which includes
ifferent types of nonlinear terms, some of which have already been realized experimentally. For example, quintic nonlinearity has
een obtained in semiconductor doped glasses while septic nonlinearity has been measured in different glasses. It can also be possible
o obtain saturation in the nonlinearity in some materials if the intensity of the pulse is relatively high. In semiconductor-doped
lasses and organic polymers, however, the nonlinearity becomes saturated even at moderate pulse intensities [5–7].

Self-steepening is one of the effects that commonly arises due to propagation of ultrashort intense pulse in a nonlinear medium.
t is related to nonlinear dispersion [8]. In the presence of this effect several attempts have been made to analyse the response of
igher-order nonlinearities on the propagation of ultrashort pulse [9–13]. In the recent past, the existence and stability of various
ypes of wave patterns (periodic pattern, bright and dark solitary pulses) have been investigated by Chow et al. It is seen that
hese modes are stabilized due to competition among different higher-order nonlinearities [14]. The existence of chirped solitary
ave solution has been investigated by Triki et al. [15]. Recently, Konar et al. studied the characteristics of chirped solitary pulse in
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dispersive media with cubic saturable nonlinearity and showed that the pulse broadening can be reduced with increase of saturation
limit [16]. The effect of cubic–quintic saturable nonlinearity on the fundamental bright soliton have been studied in higher-order
dispersive media in Ref. [17,18].

Our objective in this work is to investigate the properties of bright optical soliton in the presence of nonlinear dispersion and
aturable cubic–quintic nonlinearity, specifically, to investigate (i) how does a parameter of soliton reach its saturable limit and
ii) what are the changes in the static and dynamical properties of soliton induced by nonlinear dispersion. In the zero nonlinear
ispersion (ND) limit, the system supports stable localized solitary waves due to saturable cubic–quintic nonlinearity. These solitons
re dynamically stable. The effect of non-zero ND on the pulse is described by a derivative nonlinear Schrödinger equation (DNSE).
e work within the framework of variational approach and find an effective potential for the pulse width in the parameter space.

reating the problem in terms of effective potential in the parameter space is often termed as a potential model. This model is
idely used to predict static and dynamical properties of the solitary waves in nonlinear optical media [19–23] and Bose–Einstein

ondensates [24–26].
In Section 2, we introduce an appropriate mathematical model for the soliton in cubic-quintic nonlinear media and predict

he existence of localized bright solution in the limit of negligible nonlinear dispersion. With a view to find the effect of nonlinear
ispersion on the solitary wave we work with Ritz optimization procedure in Section 3. We derive equations for different parameters
f the solitonic pulse and analyse the effect of saturable nonlinearity. In Section 4 we present the result on the properties of pulse
onsidering nonlinear dispersive effect. We devote Section 5 to make some concluding remarks.

. Theoretical model

We consider propagation of an intense pulse in optical waveguides and model the evolution of pulse envelope (𝜓(𝑧, 𝜏)) by the
erivative non-linear Schrödinger equation [14–17,27]

𝑖𝜓𝑧 = 𝛼
𝑑2𝜓
𝑑𝜏2

+ 𝑖𝛾|𝜓|2
𝑑𝜓
𝑑𝜏

+ 𝜅|𝜓|2𝜓 +
𝛽 |𝜓|4𝜓

(1 + 𝐺|𝜓|4)
+

𝜇 |𝜓|2𝜓
(1 + 𝑆 |𝜓|2)

(1)

ere 𝛼, 𝛾, 𝜅, 𝛽 and 𝜇 stand for strength of group velocity dispersion, self-steepening, cubic nonlinearity, saturated quintic and cubic
onlinearities respectively. For 0 < 𝐺 ≤ 1 the 4th term in Eq. (1) can be expanded as: |𝜓|4𝜓 − 𝐺|𝜓|8𝜓 + ⋯. It is called saturable
uintic nonlinear term. Similarly, the term for saturated cubic nonlinearity can be expanded for 0 < 𝑆 ≤ 1. In this model we have
onsidered the dispersive effect up to second-order. This type of dispersion management is feasible in the manufacturing industry
y adjusting different parameter/ingredient of an optical fibre.

In order to understand the properties of stationary solution of Eq. (1) in the 𝛾 → 0 limit, we introduce 𝜓(𝑧, 𝜏) = 𝜙(𝜏) exp(−𝑖𝜔𝑧)
nd write z-independent GNLS equation with saturable nonlinearities

𝜔𝜙 = 𝛼
𝑑2𝜙
𝑑𝜏2

+ 𝜅|𝜙|2𝜙 +
𝛽 |𝜙|4𝜙

(

1 + 𝐺|𝜙|4
)
+

𝜇 |𝜙|2𝜙
(

1 + 𝑆|𝜓|2
)
, (2)

the energy functional for which is given by

𝐸[𝜙] = 𝛼
2

(

𝑑 𝜙
𝑑𝜏

)2
+ 𝑉 (𝜙) (3)

with

𝑉 (𝜙) = −
𝛽 tan−1

(
√

𝐺𝜙2
)

2𝐺3∕2
−

(−𝛽 + 𝐺𝜔)𝜙2

2𝐺
+ 1

4
𝜅𝜙4 −

𝜇 ln
(

1 + 𝑆𝜙2)

2𝑆2
+
𝜇𝜙2

2𝑆
. (4)

ere 𝑉 (𝜙) is a double-well shaped potential. It has one positive stationary point and one zero stationary point (left panel Fig. 1).
he stationary point at 𝜙 = 0 corresponds to the fundamental of solitary-wave solution: 𝜙(𝜏) → 0 as 𝜏 → ∞. Considering 𝜙′(0) = 0

f we take 𝜙(0) ≥ 𝜙 for solving Eq. (2), we can obtain different modes of solutions [28]. With a view to confine our attention to
undamental mode of solution we take 𝜙 = 𝜙(0) + 𝛥𝜙 and solve of Eq. (2) numerically. The result is displayed in the right panel of
ig. 1. We see that the NLS with saturable cubic-quintic nonlinearity (SCQNL) can support bright type solitary profile. It is relevant
o note that for 𝛾 ≠ 0, the existence of chirped solitary profile in the presence of unsaturated nonlinearity has recently been analysed
n Ref. [14,15].

. Variational formulation

We have seen that the stationary solution of Eq. (1) supports a single hump bright soliton. In order to understand the effect
f nonlinear dispersion on the dynamics of optical pulse propagating in a cubic–quintic saturable nonlinear medium we consider
ariational approach. To begin with we follow inverse variational method and write Lagrangian density  for Eq. (1) as

 = 𝑖(𝜓𝜓∗
𝑧 − 𝜓∗𝜓𝑧) +

1
2
𝑖𝛾|𝜓|2(𝜓𝜏𝜓∗ − 𝜓∗

𝜏 𝜓) − 2𝛼|
𝑑𝜓
𝑑𝜏

|

2
+ 𝜅|𝜓|4 +

2𝛽
𝐺

|𝜓|2 −
2𝛽 tan−1(

√

𝐺|𝜓|2)
𝐺3∕2

+
2𝜇
𝑆

|𝜓|2 −
2𝜇
𝑆2

ln(1 + 𝑆 |𝜓|2) (5)

nd we consider

𝜓(𝑧, 𝜏) = 𝐵 sech
[ 𝜏 − 𝜏0 ] × exp 𝑖

[

𝑣(𝜏 − 𝜏 ) +
𝑞

(𝜏 − 𝜏 )2 + 𝜎
]

(6)

𝑤 0 2𝑤 0
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Fig. 1. Left panel: The potential 𝑉 (𝜙) as a function of 𝜙 for 𝜅 = 4, 𝜇 = 2, 𝛽 = 3 and 𝜔 = 0.5 for bright type profile in a saturable quintic and cubic nonlinear
media with 𝐺 = 0.27 and 𝑆 = 0.27. Right panel: Stationary solution of NLS with saturable quintic nonlinearity for 𝛼 = 1.7 with the initial condition 𝜙(0) = 0.399605
and 𝜙′(0) = 0.

as a trial solution of Eq. (1) for the bright density profile with the norm 𝑃 = ∫ |𝜓(𝑧, 𝜏)|2 𝑑𝜏 = 2𝑤|𝐵|2. Here, 𝐵, 𝜏0 and 𝑤 represent
espectively the complex amplitude, central position, pulse width of the 𝜓 envelope. Other parameters, namely, 𝜎, 𝑣 and 𝑞 indicate
he phase, velocity (centre of the soliton) and frequency chirp respectively. In the variational analysis, we allow all these parameters
o vary with 𝑧 with view to catch effects of the system [29].

Inserting Eq. (6) in Eq. (5) and then integrating the resulting equation with respect to 𝜏 from −∞ to +∞ we obtain the following
veraged Lagrangian density

⟨⟩ = 2𝑖
(

𝐵 𝑑𝐵
∗

𝑑𝑧
− 𝐵∗ 𝑑𝐵

𝑑𝑧

)

𝑤 + 2|𝐵|2
(

−2𝑣𝑤
𝑑𝜏0
𝑑𝑧

+ 𝜋2

12
𝑤2 𝑑𝑞

𝑑𝑧
− 𝜋2

12
𝑞𝑤𝑑𝑤

𝑑𝑧
+ 2𝑤𝑑𝜎

𝑑𝑧

)

− 4
3
𝛾|𝐵|4𝑤𝑣

− 4𝛼|𝐵|2
(

1
3𝑤

+ 𝑣2𝑤 + 𝜋2

12
𝑞2𝑤

)

+ 4
3
𝜅|𝐵|4𝑤 +

4𝛽
𝐺

|𝐵|2𝑤 − 𝛽𝑀|𝐵|2(2𝑛−1)𝑤 +
4𝜇
𝑆

|𝐵|2𝑤 − 𝜇𝑁|𝐵|2𝑛𝑤, (7)

here

𝑀 = 2
𝐺3∕2

∞
∑

𝑛=1

(−1)𝑛+1

2𝑛 − 1
𝐺

2𝑛−1
2

(

𝑀1 +𝑀2
)

ith

𝑀1 =
(−1 + 3𝑛)

√

𝜋𝛤 (−1 + 2𝑛)

2𝛤 ( 12 + 2𝑛)
and 𝑀2 = 2(−3+4𝑛)

𝛤 (−1 + 2𝑛)𝛤 (1 + 2𝑛)
𝛤 (4𝑛)

and

𝑁 = 2
𝑆2

∞
∑

𝑛=1

𝑆𝑛(−1)𝑛+1
√

𝜋𝛤 (𝑛)

𝑛𝛤 (𝑛 + 1
2 )

.

While calculating averaged Lagrangian in Eq. (7), we expand the terms [Eq. (6)] arising from cubic and quintic saturable
nonlinearities. Understandably, the value of 𝑛 gives the order of nonlinearity.

3.1. Evolution equations in parameter space

From the vanishing conditions of the variational derivatives 𝛿⟨⟩
𝛿𝐵 , 𝛿⟨⟩

𝛿𝐵∗ , 𝛿⟨⟩
𝛿𝜏0

, 𝛿⟨⟩
𝛿𝑤 , 𝛿⟨⟩

𝛿𝑣 , 𝛿⟨⟩
𝛿𝑞 and 𝛿⟨⟩

𝛿𝜎 we obtain the following
equations

− 4𝑖𝑤𝑑𝐵
∗

𝑑𝑧
− 2𝑖𝐵∗ 𝑑𝑤

𝑑𝑧
+ 4𝐵∗𝑣𝑤

𝑑𝜏0
𝑑𝑧

− 𝜋2

6
𝐵∗𝑤

(

𝑤
𝑑𝑞
𝑑𝑧

− 𝑞 𝑑𝑤
𝑑𝑧

)

− 4𝐵∗𝑤𝑑𝜎
𝑑𝑧

+ 8
3
𝛾𝑣𝑤|𝐵|2𝐵∗ + 4

3
𝛼 𝐵

∗

𝑤

+ 4𝛼𝐵∗𝑣2𝑤 + 𝜋2

3
𝛼𝐵∗𝑞2𝑤 − 8

3
𝜅|𝐵|2𝐵∗𝑤 −

4𝛽
𝐺
𝐵∗𝑤 + 𝛽𝑀(2𝑛 − 1)|𝐵|2(2𝑛−2)𝐵∗𝑤 −

4𝜇
𝑆
𝐵∗𝑤 + 𝜇𝑁𝑛|𝐵|2(𝑛−1)𝐵∗𝑤 = 0, (8)

4𝑖𝑤𝑑𝐵
𝑑𝑧

+ 2𝑖𝐵 𝑑𝑤
𝑑𝑧

+ 4𝐵𝑣𝑤
𝑑𝜏0
𝑑𝑧

− 𝜋2

6
𝐵𝑤

(

𝑤
𝑑𝑞
𝑑𝑧

− 𝑞 𝑑𝑤
𝑑𝑧

)

− 4𝐵𝑤𝑑𝜎
𝑑𝑧

+ 8
3
𝛾𝑣𝑤|𝐵|2𝐵 + 4

3
𝛼 𝐵
𝑤

+ 4𝛼𝐵𝑣2𝑤 + 𝜋2

3
𝛼𝐵𝑞2𝑤 − 8

3
𝜅|𝐵|2𝐵𝑤 −

4𝛽
𝐺
𝐵𝑤 + 𝛽𝑀(2𝑛 − 1)|𝐵|2(2𝑛−2)𝐵𝑤 −

4𝜇
𝑆
𝐵𝑤 + 𝜇𝑁𝑛|𝐵|2(𝑛−1)𝐵𝑤 = 0, (9)

𝑑 [

|𝐵|2𝑤𝑣
]

= 0, (10)

𝑑𝑧
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− 𝜋2

6
𝑑
𝑑𝑧

(

|𝐵|2𝑤
)

𝑞 − 𝜋2

2
|𝐵|2𝑤

𝑑𝑞
𝑑𝑧

+ 2𝑖
(

𝐵∗ 𝑑𝐵
𝑑𝑧

− 𝐵 𝑑𝐵
∗

𝑑𝑧

)

+ 4|𝐵|2𝑣
𝑑𝜏0
𝑑𝑧

+ 𝜋2

6
|𝐵|2𝑞 𝑑𝑤

𝑑𝑧
− 4|𝐵|2 𝑑𝜎

𝑑𝑧
+ 4

3
𝛾|𝐵|4𝑣 − 4

3
𝛼
|𝐵|2

𝑤2

+ 4𝛼|𝐵|2𝑣2 + 𝜋2

3
𝛼|𝐵|2𝑞2 − 4

3
𝜅|𝐵|4 −

4𝛽
𝐺

|𝐵|2 + 𝛽𝑀|𝐵|2(2𝑛−1) −
4𝜇
𝑆

|𝐵|2 + 𝜇𝑁|𝐵|2𝑛 = 0, (11)

𝑑𝜏0
𝑑𝑧

+ 1
3
𝛾|𝐵|2 + 2𝛼𝑣 = 0, (12)

𝑑𝑤
𝑑𝑧

= −2𝛼𝑞, (13)

𝑑
𝑑𝑧

[𝑤|𝐵|2] = 0, (14)

The last equation can also be obtained by multiplying Eq. (8) by 𝐵 and Eq. (9) by 𝐵∗ and then subtracting the resulting equations.
However, adding Eq. (8)×𝐵 and Eq. (9)×𝐵∗ and then using Eq. (11) we get

𝑤
𝑑𝑞
𝑑𝑧

= − 4
𝜋2
𝛾𝑣|𝐵|2 − 8𝛼

𝜋2𝑤2
+ 4
𝜋2
𝜅|𝐵|2 −

6𝛽
𝜋2

(𝑛 − 1)𝑀|𝐵|4(𝑛−1) −
3𝜇
𝜋2

(𝑛 − 1)𝑁|𝐵|(2𝑛−2). (15)

his is the so-called chirp equation. This equation in conjunction with Eq. (12) leads to

𝑑2𝑤
𝑑𝑧2

= 16𝛼2

𝜋2𝑤3
− 8𝛼𝜅

𝜋2
|𝐵|2

𝑤
+

8𝛼𝛾
𝜋2

𝑣
|𝐵|2

𝑤
+

12𝛼𝛽
𝜋2

𝑀(𝑛 − 1)
|𝐵|4(𝑛−1)

𝑤
+

6𝛼𝜇
𝜋2

(𝑛 − 1)𝑁
|𝐵|2(𝑛−1)

𝑤
. (16)

q. (14) implies that 𝑤|𝐵|2 is a constant (say, 𝐸0) which is related to norm (𝑃 ) of the system. The Eq. (10) immediately demands
hat 𝑣 is constant. However, the presence of nonlinear dispersion (𝛾 ≠ 0) in Eq. (12) indicates that the velocity of the centre of
otion can be changed for any non-zero value of pulse width due to nonlinear dispersion.

. Dynamics of optical soliton

In the previous section, we have derived equations for different parameters and their dependence on the parameters of the
ystem. It is interesting to find the values of system’s parameters which can permit stable soliton solution. This can be achieved by
nalysing the effective potential model [10,29]. In order of this, we write an effective equation in terms of 𝑤 from Eq. (16) as

𝑑2𝑤
𝑑𝑧2

= 16𝛼2

𝜋2𝑤3
− 8𝛼𝜅

𝜋2
𝐸0

𝑤2
+

8𝛼𝛾
𝜋2

𝑣
𝐸0

𝑤2
+

12𝛼𝛽
𝜋2

𝑀(𝑛 − 1)
𝐸2(𝑛−1)
0

𝑤2𝑛−1
+

6𝛼𝜇
𝜋2

𝑁(𝑛 − 1)
𝐸𝑛−10
𝑤𝑛

. (17)

For the convenience of analysis, we introduce the normalized pulse width 𝑦(𝑧) = 𝑤(𝑧)
𝑤0

and write effective potential from Eq. (17) as

𝛱(𝑦) =
𝑆1

𝑦2
−
𝑆2
𝑦

+
𝑆3
𝑦

+
∑ 𝛺𝑛

𝑦2𝑛−2
+
∑ 𝛤𝑛

𝑦𝑛−1
−
(

𝑆1 − 𝑆2 + 𝑆3 +
∑

𝛺𝑛 +
∑

𝛤𝑛
)

, (18)

here

𝑆1 =
8𝛼2

𝜋2𝑤4
0

, 𝑆2 =
8𝛼𝜅𝐸0

𝜋2𝑤3
0

, 𝑆3 =
8𝛼𝛾 𝑣𝐸0

𝜋2𝑤3
0

(19)

and

𝛺𝑛 =
6𝛼𝛽
𝜋2

𝑀
𝐸2𝑛−2
0

𝑤2𝑛
0

, 𝛤𝑛 =
6𝛼𝜇
𝜋2

𝑁
𝐸𝑛−10

𝑤𝑛+10

. (20)

In Fig. 2, we plot the variation of effective potential 𝛱(𝑦) with 𝑦 for different values of 𝑛 to find the effect of higher order
erms arising from saturable nonlinearity. Clearly, the 𝛱(𝑦) has a minimum 𝑉𝑚 for the chosen values of system’s parameters and
𝑛. The values of width (𝑤𝑚) corresponding to 𝑉𝑚 gives stable pulse width. We know that for 𝑛 = 1, the effects of higher order
nonlinearity is negligible and, therefore, the black solid curve gives effective potential for the fundamental soliton solution. With
the increase of 𝑛 value, the effect of higher order nonlinearity comes into play. As a result, energy and width of the soliton start
to vary due to interplay among dispersion, Kerr nonlinearity and saturable quintic non-linearity. More specifically, the value of 𝑤𝑚
and 𝑉𝑚 decrease with the increase of 𝑛. In each case, the effect of nonlinear dispersion makes the potential less deeper (right panel
of Fig. 2). However, the effect of nonlinear dispersion is dominating in absence of saturable nonlinearities (SNs). Thus the SNs can
play an important role in stable pulse propagation.

To illustrate the insight of saturable limit in present context we display in Fig. 3 the variation of 𝑤𝑚 and 𝑉𝑚 with 𝑛 for (i) 𝛾=0
nd (ii) 𝛾 ≠ 0. The value of 𝑤𝑚 increases with the order 𝑛 of saturable nonlinearities. However, the growth of 𝑤𝑚 stops at 𝑛 = 9. We
ermed this region as unsaturated region. In this region the dispersive effect dominates over the nonlinear effects resulting a wider
ulse. However, in the saturation region (𝑛 ≥ 9) the nonlinear effect can compensate the dispersive effect and thus the pulse width
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𝑛
𝛾

Fig. 2. Plot of effective potential with pulse width in saturable nonlinear media for 𝑛 = 1(black), 𝑛 = 5(black dash), 𝑛 = 9(black dotted), 𝑛 = 15(blue) and
= 17(red). In all the panels we have taken 𝛼 = 1.72, 𝛽 = 3, 𝜅 = 4, 𝜇 = 2, 𝑤0 = 2 and 𝐺 = 𝑆 = 0.27. Left panel gives the curves for 𝛾 = 0 and 𝑣 = 0 while we take
= 0.5 and 𝑣 = 1.25 in right panel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left panel: Effective width corresponding to the potential minimum with the order of quintic saturable nonlinearity. Right panel: Minimum value of
effective potential with the order of saturable cubic-quintic nonlinearity. In all the panels we have taken 𝛼 = 1.72, 𝛽 = 3, 𝜅 = 4, 𝑣 = 1.25, 𝑤0 = 2 and 𝐺 = 𝑆 = 0.27.
Here (i) 𝐸0 = 1.5, 𝛾 = 0 (solid blue), (ii)𝐸0 = 1.5, 𝛾 = 0.5 (black dashed), (iii)𝐸0 = 1.75, 𝛾 = 0 (black dotted) and (iv)𝐸0 = 1.75, 𝛾 = 1.25 (red dashed). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Variation of effective width as a function of 𝑧 in cubic-quintic saturable nonlinear media with nonlinear dispersion. Here we have taken 𝛼 = 1.72, 𝛽 = 3,
𝜅 = 4, 𝐺 = 𝑆 = 0.27, 𝜇 = 2, 𝐸0 = 1.5 and 𝑤0 = 2. (i) 𝛾 = 0 and 𝑣 = 0 (blue curve), (ii) 𝛾 = 0.5 and 𝑣 = 1.25 (black curve). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

approaches a constant value. This effect can be controlled by 𝐸0. More specifically, the value of saturated pulse width or energy
for 𝐸0 = 1.75 is higher than that for 𝐸0 = 1.5. Therefore, without loss of generality, we truncate the series arising due to saturable
cubic–quintic nonlinearity at 𝑛 = 19 and solve 𝑑2𝑦∕𝑑𝑧2 + 𝑑𝛱(𝑦)∕𝑑𝑦 = 0 numerically taking 𝑦(0) = 𝑤𝑚 and 𝑦′(0) = 0. The variation
of normalized pulse width with 𝑧 is shown Fig. 4. We see that the pulse width remains unchanged. The value of width for 𝛾 ≠ 0
slightly differs from that for 𝛾 = 0. However, if the initial pulse width is taken slightly larger than the equilibrium value, pulse width
starts to oscillate in both cases. Their frequencies of oscillations (𝜈) are not equal. The nonlinear dispersion reduces the value of 𝜈.

We perform exact numerical simulation of Eq. (1) in the saturated nonlinear regime with initial conditions 𝜓(0, 𝜏) =
𝐵(0) sech[𝜏∕𝑤(0)] and 𝜓 ′(𝑧)|𝑧=0 = 0. Here we fixed initial values of 𝐵(0) and 𝑤(0) at the minimum of the effective potential and
calculated density profile at 𝑧 = 100 for 𝛾 = 0 (left panel, Fig. 5). We notice that the position and width of the density profile
remains unchanged with 𝑧 for 𝛾 = 0 as predicted by the variational approach. This indicates that the pulse is dynamically stable.
Interestingly, in the presence (𝛾 ≠ 0) of nonlinear dispersion (ND), the soliton starts to move with a constant velocity keeping its
shape unchanged (right panel of Fig. 5). The direction of movement depends on the sign of 𝛾. For a negative value of 𝛾 it moves
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Fig. 5. Exact numerical solution of Eq. (1) for (i) 𝛾 = 0 (left panel) and (ii) 𝛾 = ±0.5 (right panel). In left panel, the blue curve represents density profile
calculated at 𝑧 = 100 while the black curve gives variational result. In right panel the blue curve gives density profile for 𝛾 = 0 while dotted and dashed curve
give density profiles for 𝛾 = 0.5 (left side) and 𝛾 = −0.5 (right side) calculated at 𝑧 = 8 from exact numerical simulation of Eq. (1). In all the panels we have
taken 𝛼 = 1.72, 𝛽 = 3, 𝜇 = 2, 𝜅 = 4 and 𝐺 = 𝑆 = 0.27.

towards the right (dashed curve) while it moves towards the left (dotted curve) if 𝛾 is positive. However, the profile remains stable
even at a larger value of 𝑧. This result is consistent with the variational prediction in Eq. (12).

5. Conclusions

Pulse propagation in an optical medium depends on nonlinear and dispersive responses of the medium. Interestingly, the modern
technology has paved the way of engineering materials with manageable nonlinearity and dispersion in the manufacturing industry
by adjusting different parameters/ingredients of the system. In this work we have discussed optical pulse propagation in saturable
cubic-quintic nonlinear media with nonlinear dispersion.

We adopted an extended variational method and derived an effective potential for pulse width based on a suitable chosen trial
solution. We estimated the trial solution from the shape of the stationary pulse in the zero nonlinear dispersion region. In the
variational technique we allow different parameters to vary in order to catch the effect of nonlinear dispersion. Based on a potential
model we have examined that energy and width of the soliton attain a limiting value after a certain order of nonlinear terms.
However, the saturation limit depends on the power of pulse. We have shown that in the unsaturated regime the cubic-quintic
nonlinear medium with nonlinear dispersion supports relatively wider solitons. These solitons are stable. If the soliton is disturbed
then its width oscillates about its equilibrium value. The oscillation frequency is affected by the strength of nonlinear dispersion.

We envisaged a direct numerical simulation for the dynamics of soliton both in presence and absence of nonlinear dispersion
(ND). In the zero ND regime, the characteristics and position of solitons are found to be unchanged for a long time implying that
it is dynamically stable. However, due to nonlinear dispersion the soliton starts to move with a constant velocity. The direction of
the movement is determined by sign of the nonlinear dispersion term. A similar dynamics can be realized due Raman effect [18].
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